

2 (i)	$\begin{aligned} & \text { Mean }=\frac{3026}{56}=54.0 \\ & S_{x x}=178890-\frac{3026^{2}}{56}=15378 \\ & s=\sqrt{\frac{15378}{55}}=16.7 \end{aligned}$	B1 for mean M1 for attempt at $S_{x x}$ A1 CAO	3
(ii)	$\bar{x}+2 s=54.0+2 \times 16.7=87.4$ So 93 is an outlier	M1 for their $\bar{X}+2 \times$ their s A1 FT for 87.4 and comment	2
(iii)	New mean $=1.2 \times 54.0-10=54.8$ New $s=1.2 \times 16.7=20.1$	B1 FT M1A1 FT	3
		TOTAL	8

3 (i)	$\begin{aligned} & \text { Either } P(\text { all } 4 \text { correct })=\frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}=\frac{1}{35} \\ & \text { or } P(\text { all } 4 \text { correct })=\frac{1}{{ }^{7} \boldsymbol{C}_{4}}=\frac{1}{35} \end{aligned}$	M1 for fractions, or ${ }^{7} \mathrm{C}_{4}$ seen A1 NB answer given	2
(ii)	$\begin{aligned} & \mathrm{E}(X)=1 \times \frac{4}{35}+2 \times \frac{18}{35}+3 \times \frac{12}{35}+4 \times \frac{1}{35}=\frac{80}{35}=2 \frac{2}{7}=2.29 \\ & \mathrm{E}\left(X^{2}\right)=1 \times \frac{4}{35}+4 \times \frac{18}{35}+9 \times \frac{12}{35}+16 \times \frac{1}{35}=\frac{200}{35}=5.714 \\ & \operatorname{Var}(X)=\frac{200}{35}-\left(\frac{80}{35}\right)^{2}=\frac{24}{49}=0.490 \text { (to } 3 \text { s.f.) } \end{aligned}$	M1 for $\underset{\sim}{r} r p$ (at least 3 terms correct) A1 CAO M1 for $\Sigma x^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(X)^{2}$ A1 FT their $\mathrm{E}(X)$ provided $\operatorname{Var}(X)>0$	5
		TOTAL	7

5 (i)	$\begin{aligned} & \mathrm{P}(X=1)=7 k, \mathrm{P}(X=2)=12 k, \mathrm{P}(X=3)=15 k, \mathrm{P}(X=4)=16 k \\ & 50 k=1 \text { so } k=1 / 50 \end{aligned}$	M1 for addition of four multiples of k A1 ANSWER GIVEN	2
(ii)	$\begin{aligned} & \mathrm{E}(X)=1 \times 7 k+2 \times 12 k+3 \times 15 k+4 \times 16 k=140 k=2.8 \\ & \text { OR } \mathrm{E}(X)=1 \times{ }^{7} / 50+2 \times{ }^{12} / 50+3 \times 15 / 50+4 \times{ }^{16} / 50={ }^{140} / 50= \\ & 2.8 \text { oe } \end{aligned} \quad \begin{aligned} & \operatorname{Var}(X)=1 \times 7 k+4 \times 12 k+9 \times 15 k+16 \times 16 k-7.84=1.08 \\ & \text { OR } \operatorname{Var}(X)=1 \times 7 / 50+4 \times 12 / 50+9 \times 15 / 50+16 \times 16 / 50-7.84 \\ & \quad=8.92-7.84=1.08 \end{aligned}$	M1 for $\Sigma x p$ (at least 3 terms correct) A1 CAO M1 $\Sigma x^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(X$ $)^{2}$ NB provided $\operatorname{Var}(X)$ $>$ A1 FT their $\mathrm{E}(X)$	5
		TOTAL	7

